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Abstract  

In order to improve drought forecasting skill, this study develops a probabilistic drought 

forecasting framework comprised of dynamical and statistical modeling components. The 

novelty of this study is to seek the use of data assimilation to quantify initial condition 

uncertainty with the Monte Carlo ensemble members, rather than relying entirely on the 

hydrologic model or land surface model to generate a single deterministic initial condition, as 

currently implemented in the operational drought forecasting systems. Next, the initial condition 

uncertainty is quantified through data assimilation and coupled with a newly developed 

probabilistic drought forecasting model using a copula function. The initial condition at each 

forecast start date are sampled from the data assimilation ensembles for forecast initialization. 

Finally, seasonal drought forecasting products are generated with the updated initial conditions. 

This study introduces the theory behind the proposed drought forecasting system, with an 

application in Columbia River Basin, Pacific Northwest, United States. Results from both 

synthetic and real case studies suggest that the proposed drought forecasting system significantly 

improves the seasonal drought forecasting skills and can facilitate the state drought preparation 

and declaration, at least three months before the official state drought declaration.  
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1 Introduction 

Drought is a naturally occurring climate phenomenon driven by extreme macroclimatic 

variability originating from atmospheric interactions and feedback between the atmosphere, the 

oceans, and the land surface (Ahmadalipour et al., 2017; Keyantash and Dracup, 2002; Mishra 

and Singh, 2010; Yan, 2016). Contrary to other natural disasters such as floods, hurricanes, and 

tornados, droughts develop slowly over large spatial extents and last for multiple years. It is 

usually difficult to identify droughts until severe damage has already occurred (Luo and Wood, 

2007; Mishra and Singh, 2011). Moreover, drought is the most costly extreme event among all 

natural disasters (NCDC, 2012; Ross and Lott, 2003; Sheffield et al., 2014). For instance, Howitt 

et al. (2014) estimated that the recent California (CA) extreme drought resulted in an economic 

loss of $2.7 billion in 2014; Washington Department of Agriculture (2015) calculated that the 

economic loss of the 2015 state drought was more than $335 million.  

In order to mitigate the extensive negative socio-economic impacts, comprehensive 

preparation and effective response to drought is necessary. A drought forecasting system which 

provides forecasts of potential drought conditions in a timely manner is critical to stakeholders 

and decision-makers. In the U.S., there are few federal drought forecasting systems, including 

the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center’s 

(CPC’s) Seasonal Drought Outlook (SDO) (Steinemann, 2006) and the National Integrated 

Drought Information System’s (NIDIS’s) Drought Early Warning Systems (DEWS). Despite 

these efforts, the World Climate Research Program still recognizes that seasonal drought 

forecasting is one of the major research gaps in hydroclimatology (WCRP, 2010).  

Drought forecasting generally relies on drought indicators computed by either dynamical 

model simulations or statistical methods (DeChant and Moradkhani, 2014; Kumar et al., 2014b; 
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Mao et al., 2015; Wood and Lettenmaier, 2008). One option to generate hydrologic prediction is 

the Ensemble Streamflow Prediction (ESP) framework (Day, 1985). The ESP is generated by 

deriving the hydrologic modeling using resampled historical meteorological variables and future 

drought condition is estimated accordingly. However, the sampled forcing data is not necessarily 

representative of the non-stationary climate (Milly et al., 2008; Yan and Edwards, 2013). 

Another option is to use dynamical forecasting products, such as the Climate Forecast System 

Version 2 (CFSv2) products (Yuan et al., 2011) and the North American Multimodel Ensemble 

(NMME) climate forecasts (Yuan, 2016). While dynamical forecast provides future climate 

information, the precipitation forecasts are subject to high uncertainty and exhibit low skill 

beyond one month lead time (Hayes et al., 2005; Lavers et al., 2009; Yuan et al., 2013). As an 

alternative, a recently developed probabilistic drought forecasting approach built on copula 

functions (Madadgar and Moradkhani, 2013) could be used. Recent studies have shown that such 

a statistical approach could lead to good seasonal drought forecasting skill (Chen et al., 2015; 

Madadgar and Moradkhani, 2016, 2014; Mishra and Desai, 2005).   

Recent works show that seasonal hydrologic forecast skill is mostly controlled by 

hydrologic initial condition (DeChant and Moradkhani, 2015, 2011; Koster et al., 2010; Li et al., 

2009; Shukla and Lettenmaier, 2011; Wood et al., 2016; Wood and Lettenmaier, 2008; Yossef et 

al., 2013; Yuan et al., 2016). For instance, the initial condition refers to the root-zone soil 

moisture for agricultural drought forecasting. Initial condition uncertainty arises from the chaotic 

properties of the Earth system and is unavoidable due to inability to accurately observe land 

surface states (Stainforth et al., 2005). In the western U.S., the accurate estimation of initial 

condition uncertainty is particularly important due to ongoing coverage of drought in California 

and Pacific Northwest. However, the initial condition uncertainty is not considered in the 
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aforementioned drought forecasting systems, where a single deterministic hydrologic initial 

condition is utilized. Therefore, in order to improve drought forecasting skill, this study seeks the 

use of ensemble data assimilation (DA) to improve land initialization by quantifying the initial 

condition uncertainty (DeChant and Moradkhani, 2011; Yan et al., 2015; Yan and Moradkhani, 

2016).  

In summary, the scope of this study is to develop a probabilistic drought forecasting 

system, with the use of DA and a copula-based probabilistic drought forecasting method. It is 

hypothesized that an accurate quantification of uncertainty in hydrologic initial condition would 

lead to a better drought forecasting skill. The paper is organized as follows. Section 2 describes 

the framework of the proposed probabilistic drought forecasting system, including the dynamical 

hydrologic modeling, the DA implementation, and the statistical modeling using copula 

functions to generate the probabilistic forecasts. Section 3 applies the proposed forecasting 

system with a case study in the Columbia River Basin, Pacific Northwest. Finally, section 4 

provides the conclusion. 

 

2 Probabilistic Drought Forecasting System Framework  

The framework of the proposed probabilistic drought forecasting system is described here. The 

system is composed of three main components: (1) hydrologic modeling, (2) data assimilation, 

and (3) a copula-based probabilistic drought forecasting model. The hydrologic model is first 

calibrated for the study region. Then the copula-based probabilistic drought forecasting model is 

developed based on the long-term open-loop (OL) simulations that is simulation with no 

assimilation, of hydrologic observations. Next, the DA system is used to assimilate the remotely 

sensed and in-situ observations to improve hydrologic simulation and characterize the initial 
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condition uncertainty by estimating the probability density function (PDF) of the initial 

conditions. Last, the initial conditions sampled from the PDF are used in the copula-based 

probabilistic drought forecasting model to generate seasonal drought forecasts. Figure 1 displays 

the proposed drought forecasting framework. 

 

--------------------------------------- 

Please place Figure 1 here 

--------------------------------------- 

 

2.1 Hydrologic Modeling  

The Precipitation-Runoff Modeling System (PRMS) (Leavesley et al., 1983) is used in this study 

to model the land surface states. The PRMS is a modular deterministic, distributed-parameter, 

and physical-process watershed model (Markstrom et al., 2008). The land surface hydrologic 

process simulated by PRMS includes the evapotranspiration, runoff, infiltration, interflow, 

snowpack, and soil moisture. Instead of delineating a watershed into uniform grid cells, the 

PRMS partitions a watershed into hydrologic response units (HRUs) that are based on the 

physical attributes of the watershed such as land-surface elevation, slope and aspect, vegetation 

type, soil type, and spatiotemporal climate patterns (Markstrom et al., 2015). The physical 

attributes and hydrologic response of each HRU are assumed to be homogeneous. The 

meteorological forcing data for PRMS are precipitation, minimum temperature and maximum 

temperature. Excess runoff is routed to the outlet through the cascade and Muskingum routing 

methods.  
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The PRMS version 4.0.1 (PRMS-IV) released on March 15, 2015 was used in this study. 

The PRMS-IV takes soil moisture into account in three reservoir systems: the preferential-flow 

reservoir, the capillary reservoir, and the gravity reservoir. The preferential-flow reservoir 

represents the water content between preferential-flow threshold and total soil saturation; it is 

available for fast interflow and Dunnian surface runoff. The capillary reservoir represents the 

moisture content between wilting point and field capacity; it is only available for 

evapotranspiration and not for drainage. The gravity reservoir is limited to the water content 

between field capacity and preferential-flow threshold. The water content in this reservoir is 

available for slow interflow, groundwater recharge, and Dunnian surface runoff (Markstrom et 

al., 2015).  

 

2.2 Data Assimilation Algorithm 

The ensemble DA system is used to quantify the initial condition uncertainty. The recently 

developed particle filter Markov chain Monte Carlo (PMCMC) (Moradkhani et al., 2012) is used 

in this study. The PMCMC is an extension of the particle filter with sampling importance 

resampling (PF-SIR) (Moradkhani et al., 2005) and uses the PF-SIR to design efficient high-

dimensional proposal distributions for MCMC algorithm. Despite the reasonable performance of 

the EnKF, the PF was found to be more robust since it can relax the Gaussian error assumption, 

preserve water balance, and provide a more complete representation of state posterior 

distribution for a nonlinear non-Gaussian hydrologic system (DeChant and Moradkhani, 2012; 

Dong et al., 2015; Plaza et al., 2012; Yan and Moradkhani, 2016). 
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2.2.1 PF-SIR Algorithm  

Following Moradkhani (2008), the state-space models that describe the generic non-linear earth 

system are as follows: 

 𝑦𝑡 = ℎ(𝑥𝑡) + 𝑣𝑡 (1) 

   𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑢𝑡 , 𝜃) + 𝑤𝑡 (2) 

where 𝑥𝑡 ∈ ℝ𝑛 is a vector of the uncertain state variables at current time step, 𝑦𝑡 ∈ ℝ𝑚 is a 

vector of observation data, 𝑢𝑡 is the uncertain forcing data, 𝜃 ∈ ℝ𝑑 is a vector of model 

parameters, ℎ(∙) is a non-linear function that relates the states 𝑥𝑡 to the observations 𝑦𝑡, 𝑤𝑡 

represents the model error, and 𝑣𝑡 indicates the observation error. The errors 𝑤𝑡  and 𝑣𝑡 are 

assumed to be white noise with mean zero and covariance 𝑄𝑡 and 𝑅𝑡, respectively.  

According to Moradkhani et al. (2005), the posterior distribution of the state variables 𝑥𝑡 

given a realization of the observations 𝑦1:𝑡 is written as follows: 

 
𝑝(𝑥𝑡|𝑦1:𝑡) = 𝑝(𝑥𝑡|𝑦1:𝑡−1, 𝑦𝑡 ) =

𝑝(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡−1)

𝑝(𝑦𝑡|𝑦1:𝑡−1)

=
𝑝(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡−1)

∫ 𝑝(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡−1)𝑑𝑥𝑡

 

(3) 

   𝑝(𝑥𝑡|𝑦1:𝑡−1) = ∫ 𝑝(𝑥𝑡 , 𝑥𝑡−1|𝑦1:𝑡−1)𝑑𝑥𝑡−1 =

∫ 𝑝(𝑥𝑡|𝑥𝑡−1)𝑝(𝑥𝑡−1|𝑦1:𝑡−1)𝑑𝑥𝑡−1 

(4) 

where 𝑝(𝑦𝑡|𝑥𝑡) is the likelihood, 𝑝(𝑥𝑡|𝑦1:𝑡−1) is the prior distribution, and 𝑝(𝑦𝑡|𝑦1:𝑡−1) is the 

normalization factor. The marginal likelihood 𝑝(𝑦1:𝑡) can be computed as: 

 𝑝(𝑦1:𝑡) = 𝑝(𝑦1) ∏ 𝑝(𝑦𝑡|𝑦1:𝑡−1) (5) 

where the normalization factor 𝑝(𝑦𝑡|𝑦1:𝑡−1) is: 

 
𝑝(𝑦𝑡|𝑦1:𝑡−1) = ∫ 𝑝(𝑦𝑡 , 𝑥𝑡|𝑦1:𝑡−1)𝑑𝑥𝑡 = ∫ 𝑝(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡−1)𝑑𝑥𝑡 (6) 
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In practice, Equation (3) does not have an analytical solution except for few special cases (e.g., 

the linear system with Gaussian assumption). Instead, the posterior distribution 𝑝(𝑥𝑡|𝑦1:𝑡) is 

approximated using a set of Monte Carlo (MC) random samples as: 

 

𝑝(𝑥𝑡|𝑦1:𝑡) ≈ ∑ 𝑤𝑡
𝑖+𝛿(𝑥𝑡 − 𝑥𝑡

𝑖)

𝑁

𝑖=1

 (7) 

where 𝑤𝑡
𝑖+ is the posterior weight of the 𝑖th particle, 𝛿 is the Dirac delta function, and 𝑁 is the 

ensemble size. The normalized weights are calculated as follows: 

 
𝑤𝑡

𝑖+ = 𝑤𝑡
𝑖−

𝑝(𝑦𝑡|𝑥𝑡
𝑖 )

∑ 𝑤𝑡
𝑖−𝑝(𝑦𝑡|𝑥𝑡

𝑖)𝑁
𝑖=1

 (8) 

where 𝑤𝑡
𝑖− is the prior particle weights, and 𝑝(𝑦𝑡|𝑥𝑡

𝑖) can be computed from the likelihood 

𝐿(𝑦𝑡|𝑥𝑡
𝑖). Generally, a Gaussian distribution is used to estimate 𝐿(𝑦𝑡|𝑥𝑡

𝑖):  

 
𝐿(𝑦𝑡|𝑥𝑡

𝑖) =
1

√(2𝜋)𝑚|𝑅𝑡|
𝑒𝑥𝑝 [−

1

2
(𝑣𝑡

𝑖)
𝑇

𝑅𝑡
−1(𝑣𝑡

𝑖)]  (9) 

where 𝑣𝑡
𝑖 = 𝑦𝑡 − ℎ(𝑥𝑡

𝑖) is the residual. The estimate of the normalization factor 𝑝(𝑦𝑡|𝑦1:𝑡−1) in 

Equation (6) is given by: 

 

𝑝(𝑦𝑡|𝑦1:𝑡−1) ≈ ∑ 𝑤𝑡
𝑖−𝑝(𝑦𝑡|𝑥𝑡

𝑖)

𝑁

𝑖=1

= ∑ 𝑤𝑡
𝑖−𝐿(𝑦𝑡|𝑥𝑡

𝑖)

𝑁

𝑖=1

 (10) 

To obtain approximate samples from 𝑝(𝑥𝑡|𝑦1:𝑡), a resampling operation is necessary to 

reduce the weight degeneration problem where all but one of the importance weights are close to 

zero. The SIR algorithm suggests resampling the particles with a probability greater than the 

uniform probability. After resampling, all the particle weights are set equal to 1 𝑁⁄ . Based on the 

above descriptions, the PF-SIR algorithm can thus be summarized as follows: 

At time 𝑡 = 1,  
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 Initialize the system by sampling the model states 𝑥𝑡
𝑖 , 𝑖 = 1, … , 𝑁 from a uniform 

distribution 

 Assign the particle weights uniformly 𝑤𝑡
𝑖+ = 𝑤𝑡+1

𝑖− = 1 𝑁, 𝑖 = 1, … , 𝑁⁄  

At time 𝑡 ≥ 2, 

 Propagate the 𝑁 model states forward in time 𝑥𝑡
𝑖 through model operator 

 Update the particle weights 𝑤𝑡
𝑖+ = 𝑤𝑡

𝑖− 𝑝(𝑦𝑡|𝑥𝑡
𝑖  )

∑ 𝑤𝑡
𝑖−𝑝(𝑦𝑡|𝑥𝑡

𝑖)𝑁
𝑖=1

 

 Resample to obtain 𝑁 new equally-weighted particles 𝑥𝑡
𝑖 with 𝑤𝑡

𝑖+ = 1 𝑁, 𝑖 = 1, … , 𝑁⁄  

 

2.2.2 PMCMC Algorithm  

The PMCMC is an extension of the particle filter with sampling importance resampling (PF-SIR) 

and uses the PF-SIR to design efficient high-dimensional proposal distributions 𝑝(𝑥𝑡|𝑦1:𝑡) for 

MCMC algorithm. The PMCMC has the following three steps: 

(1) Initialization (𝑗 = 0): run PF-SIR targeting 𝑝(𝑥𝑡|𝑦1:𝑡), sample 𝑋𝑡(0)~𝑝(𝑥𝑡|𝑦1:𝑡) and let 

𝑝(𝑦1:𝑡)(0) denote the corresponding marginal likelihood estimate.  

(2) Iteration (𝑗 ≥ 1): sample 𝑋𝑡
∗~𝑝(𝑥𝑡|𝑦1:𝑡) again and let 𝑝(𝑦1:𝑡)∗ denote the corresponding 

marginal likelihood estimate. (3) Calculate the acceptance ratio as: 

 
𝑚𝑖𝑛 {1,

𝑝(𝑦1:𝑡)∗

𝑝(𝑦1:𝑡)(𝑗 − 1)
} (11) 

and set 𝑋𝑡(𝑗) = 𝑋𝑡
∗ and 𝑝(𝑦1:𝑡)(𝑗) = 𝑝(𝑦1:𝑡)∗; otherwise set  𝑋𝑡(𝑗) = 𝑋𝑡(𝑗 − 1) and 𝑝(𝑦1:𝑡)(𝑗) =

𝑝(𝑦1:𝑡)(𝑗 − 1). The marginal likelihood is estimated based on the Equations (5) and (10). 
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2.3 Copula-based Probabilistic Drought Forecasting Model 

A newly developed probabilistic drought forecasting method based on copula functions 

(Madadgar and Moradkhani, 2014, 2013) is used here which is coupled with the initial condition 

uncertainty through DA. Since drought indicators are usually statistically dependent on their past 

status, they can be expressed within the Bayesian networks, which are capable of describing the 

conditional dependencies of two random variables. The core of this forecasting model is to apply 

a multivariate distribution function to forecast future drought conditions given the current or past 

drought status.  

Copulas are multivariate distribution functions on the 𝑛-dimensional unit cube. The 

variables of copula functions are uniformly distributed with [0, 1]. Following Sklar’s theorem 

(Sklar, 1959), a multivariate distribution 𝑃(𝑥1, … 𝑥𝑛) can be expressed by copula functions as 

follows: 

 𝑃(𝑥1, … 𝑥𝑛) = 𝐶[𝑃(𝑥1), … , 𝑃(𝑥𝑛)] = 𝐶(𝑢1, … , 𝑢𝑛) (12) 

where 𝐶 is the cumulative distribution function (CDF) of copula, and 𝑃(𝑥𝑖) is the marginal 

distribution of 𝑥𝑖 being uniform with [0, 1], which is denoted by 𝑢𝑖. If the 𝐶[𝑃(𝑥1), … , 𝑃(𝑥𝑛)] is 

absolutely continuous, its PDF can be written as: 

 
𝑐(𝑢1, … , 𝑢𝑛) =

𝜕𝑛𝐶(𝑢1, … , 𝑢𝑛)

𝜕𝑢1 … 𝜕𝑢𝑛
 (13) 

Using the PDF of the copula, the joint PDF of 𝑝(𝑥1, … 𝑥𝑛) can be expressed as: 

 
𝑝(𝑥1, … 𝑥𝑛) = 𝑐(𝑢1, … , 𝑢𝑛) ∏ 𝑝(𝑥𝑖)

𝑛

𝑖=1

 (14) 

For the drought forecasting application, only two random variables are modeling (𝑛 = 2). As a 

result, the conditional probability distribution of 𝑥𝑡+1 given 𝑥𝑡 is written as: 
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𝑝(𝑥𝑡+1|𝑥𝑡) =

𝑝(𝑥𝑡+1, 𝑥𝑡)

𝑝(𝑥𝑡)
 (15) 

Replacing the joint PDF 𝑝(𝑥𝑡+1, 𝑥𝑡) in Equation (15) with Equation (14), the conditional 

probability of Equation (15) can be revised as: 

 
𝑝(𝑥𝑡+1|𝑥𝑡) =

𝑝(𝑥𝑡+1, 𝑥𝑡)

𝑝(𝑥𝑡)
=

𝑐(𝑢𝑡+1, 𝑢𝑡)𝑝(𝑥𝑡+1)𝑝(𝑥𝑡)

𝑝(𝑥𝑡)
= 𝑐(𝑢𝑡+1, 𝑢𝑡)𝑝(𝑥𝑡+1) (16) 

Using Equation (16), the probabilistic forecast of drought states in time 𝑡 + 1 given the 

drought condition at time 𝑡 can be examined. The mode of the 𝑝(𝑥𝑡+1|𝑥𝑡) is correspondent to the 

maximum likelihood estimation (MLE) of 𝑥𝑡+1. For seasonal drought forecasting, the 𝑥𝑡+1 

represents the drought condition in the coming season, and 𝑥𝑡 indicates the initial drought 

condition in the current season. Following Madadgar and Moradkhani (2013), to build the 

conditional PDF of Equation (16), the Monte Carlo (MC) approach is used to sample from the 

copula density function 𝑐(𝑢𝑡+1, 𝑢𝑡). Different copula functions can be used to join the marginal 

distributions of correlated and dependent variables. Among various copula families, the 

Archimedean and elliptical families are usually used in hydrological applications (Madadgar and 

Moradkhani, 2016). The Gaussian and 𝑡 copulas from the elliptical family, and the Gumbel and 

Clayton from the Archimedean family, can be tested with parameters estimated by the inference 

function for margins (IFM) method (Joe, 1997). To select the appropriate copula function among 

the various copula functions, a goodness-of-fit (GOF) test can be used, such as the parametric 

bootstrapping GOF test (Genest and Rémillard, 2008). 

Based on the descriptions in Sections 2.1-2.3, the proposed dynamical-statistical drought 

forecasting system can thus be summarized as follows: 

At each drought forecasting initialization date 𝑡, 

 Download the forcing data until the initialization date 
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 Run the dynamical hydrologic model to estimate long-term retrospective root-zone soil 

moisture until the initialization date (modeling period: >30 years) 

 Develop the copula-based statistical forecasting model based on the long-term 

retrospective dataset 

 Download the remotely sensed surface soil moisture until the initialization date 

 Run the DA system to assimilate remotely sensed surface soil moisture until the 

initialization date (assimilation period: several months) 

 Quantify the initial condition uncertainty in terms of a PDF through the ensemble 

members from DA 

 Sample initial condition from the PDF and input into the copula-based forecasting 

model 

 Generate probabilistic drought forecasts  

 

2.4 Seasonal to Inter-annual Drought Forecasting Framework 

Based on Figure 2, the proposed probabilistic drought forecasting system has three components: 

(1) Seasonal drought forecasting. This is the official seasonal drought forecasting product for 

decision-makers and water resources managers. The system generates forecasts for the current 

season based on last season and is performed on 1-January (winter forecasting), 1-April (spring 

forecasting), 1-July (summer forecasting), and 1-October (fall forecasting). (2) Seasonal drought 

outlook. The seasonal outlook products offer the seasonal drought information in an earlier time 

manner (up to six-month preparation time). There are three seasonal outlook products in the 

proposed system: the 1st, 2nd, and 3rd seasonal outlook. The 1st seasonal outlook products provide 

drought information for the next season given the drought status in last season. When more 



13 

 

information becomes available, the system updates and generates the 2nd and 3rd seasonal drought 

outlook products with four and five months of information. Due to the persistence of soil 

moisture memory, the seasonal drought forecasting is expected to provide better results than 

seasonal drought outlook. (3) Inter-annual drought forecasting. The inter-annual drought 

forecasting products estimate the drought information for the next half a year. It is performed on 

1-January, 1-April, 1-July, and 1-October. The inter-annual drought forecasting can provide 

long-term drought information for decision-makers. 

 

--------------------------------------- 

Please place Figure 2 here 

--------------------------------------- 

 

 

3 Case Study 

In general, droughts can be classified as meteorological drought (precipitation deficit), 

agricultural drought (soil moisture deficit), and hydrological drought (streamflow/groundwater 

deficit) (Van Loon, 2015). In this study, we examine the impacts of quantifying the root-zone 

soil moisture initial condition uncertainty with the assimilation of satellite surface soil moisture 

for improving agricultural drought forecasting. Similar to what has been explained here, other 

remotely sensed or in-situ data, e.g. total water storage and precipitation, can also be assimilated 

in the same way to improve the forecasting of hydrological and meteorological droughts.  
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3.1 Study Area 

The Columbia River Basin (CRB), located in Pacific Northwest (PNW), covers about 674,500 

km2 of U.S. (~85%) and Canada (~15%) (Beechie and Imaki, 2014). In the U.S., the CRB spans 

seven states, including Washington, Oregon, Idaho, Montana, Utah, Wyoming, and Nevada 

(Figure 3). The CRB encompasses a wide range of physiographic provinces and ecoregions 

ranging from semiarid in central plateaus to wet forests in the Cascade Mountains (Omernik and 

Bailey, 1997). The mean annual precipitation ranges from about 200 mm in central plateaus to 

about 3,550 mm in Cascade Mountains (Daly et al., 2002). The Columbia River is the 4th largest 

river in North America, originating in the Rocky Mountain and flowing to the Pacific Ocean, 

with a mean annual discharge of 247 million cubic meters (Cosens and Williams, 2012). More 

than 450 dams have been built on this river system to provide hydroelectricity, flood control, 

irrigation, and stream regulation. The Columbia River is dominated by snow hydrology: snow 

accumulating in winter and melting in spring. It generally shows a characteristic of low flow in 

winter and peak flow in spring (Hamlet and Lettenmaier, 1999). Recently, the CRB droughts 

have received increasing attention due to the low snowpack and rising temperature. For instance, 

the Washington Department of Agriculture (2015) calculated that the economic loss of the 2015 

state drought was more than $335 million.   

 

--------------------------------------- 

Please place Figure 3 here 

--------------------------------------- 
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3.2 Data Sources 

The meteorological forcing data, precipitation, maximum and minimum temperature (January 1, 

1979 to December 31, 2015) were acquired from the Phase 2 of the North American Land Data 

Assimilation Systems (NLDAS-2) (Xia et al., 2014). The majority of NLDAS-2 atmospheric 

forcing data are derived from the North American Regional Reanalysis (NARR) which features a 

32 km spatial resolution and a three-hour temporal resolution. The NLDAS software is used to 

interpolate the coarse resolution NARR data to the finer scale 1/8th degree NLDAS grid and to 

the one-hour NLDAS temporal resolution (Xia et al., 2012). In this study, the hourly NLDAS-2 

primary forcing data were first aggregated into daily time step and then upscaled/downscaled for 

each HRU in CRB.  

The blended microwave soil moisture climate change initiative (CCI) products v02.2 

released on February 2016 (Liu et al., 2012) and the Advanced Microwave Scanning 

Radiometer2 (AMSR2) soil moisture products (Imaoka et al., 2010) were used in this study. The 

CCI soil moisture were merged from four passive and two active microwave products (Dorigo et 

al., 2015), including the Scanning Multichannel Microwave Radiometer (SMMR), Special 

Sensor Microwave Imager (SSM/I), Tropical Rainfall Measure Mission (TRMM) Microwave 

Imager (TMI), Advanced Microwave Scanning Radiometer for Earth Observing System 

(AMSR-E), Advanced Microwave Instrument (AMI), and Advanced Scatterometer (ASCAT). 

The blended CCI data cover the period of 1978-2014. The AMSR2 is onboard the Global 

Change Observation Mission1-Water (GCOM-W1) satellite which was launched in May 2012 by 

the Japan Aerospace Exploration Agency (JAXA). The AMSR2 soil moisture products, 

generated using the Land Parameter Retrieval Model (LPRM) developed by Vrije Universiteit 

(VU) Amsterdam and NASA Goddard Space Flight Center (GSFC) (Owe et al., 2008), were 
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employed in this study. These two products are selected due to the data availability. The latest 

Soil Moisture Active Passive (SMAP) (Entekhabi et al., 2010) L-band soil moisture products 

issued from March 31, 2015 will be used for future operational drought forecasting. All the 

satellite soil moisture products were upscaled/downscaled for each HRU in CRB. The inverse 

distance weighting (IDW) spatial interpolation technique is used in this study to 

downscale/upscale the satellite soil moisture into HRU scale. 

Calibration of the PRMS was performed on a daily timescale utilizing a combination of 

unregulated U.S. Geological Survey (USGS) streamflow data, as well as No Regulation No 

Irrigation (NRNI) streamflow data provided by Bonneville Power Administration (BPA) 

[https://www.bpa.gov/power/streamflow/]. The BPA-NRNI data cover daily streamflow from the 

period July 1, 1928 to September 30, 2008, and were generated in a joint effort between the U.S. 

Army Corps of Engineers (USACE) and the Bureau of Reclamation (BOR). The NRNI datasets 

emulate daily discharge gauges, typically at manmade control structures, where estimated and 

measured inputs and outputs can be summed to produce daily streamflow data.  

 

3.3 Model Calibration 

Due to the CRB’s significant extent into British Columbia, the HRU delineation was completed 

in two ways. The HRUs for the U.S. portion were provided by the PRMS Geospatial Fabric 

(Viger, 2014). For the area of the CRB inside British Columbia, the ESRI ArcMap 10.3.1 was 

used along with a digital elevation model to produce stream segment lines as well as watershed 

delineations. Due to a lack of data to calibrate the Canadian portion of the CRB, the HRUs are 

rather large, relative to the U.S. portion. The two spatial shapefiles (U.S. and Canadian) were 

then stitched together, ensuring no overlapping HRU areas and continuity between stream 
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segments between the U.S. and Canada border. As a result, a total of 7,739 HRUs and 4,019 

stream segments were delineated for the CRB. 

In this study, 146 NRNI data sets were used as the primary control points for calibration 

along with over 300 selected USGS streamflow gauges. The NRNI data from January 1, 1979 to 

December 31, 2000 were used for calibration and January 1, 2001 to September 30, 2008 for 

validation. Calibrations for USGS streamflow gauges varied in length due to lapsing streamflow 

gauge operation, however only data within the range of January 1, 1979 to December 31, 2010 

were used for calibration/validation. Monthly averaged normal incident solar radiation atlas data 

[http://www.nrel.gov/gis/data_solar.html] and monthly averaged evaporation atlas (Farnsworth et 

al., 1982) were used for calibration of solar radiation (SR) and potential evapotranspiration 

(PET) parameters in the U.S. portion of the model. The SR and PET parameters for the Canadian 

portion of the CRB were extrapolated from the U.S. portion.  

A combination of two programs created by the USGS was used in calibration, LUCA and 

LUMEN (Hay and Umemoto, 2006). LUMEN assists in model structure during calibration so 

that the model can more easily be calibrated using a top-down approach. LUCA uses the 

Shuffled Complex Evolution (SCE) global search algorithm to calibrate the 31 model parameters 

(Duan et al., 1994). Figure 3 presents the Kling-Gupta efficiency (KGE) (Gupta et al., 2009) 

values for the 146 NRNI control points from January 1, 1984 to September 30, 2008. The 

majority of the gauges show the KGE values greater than 0.7, which indicates the good 

performance of the calibrated model.   
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3.4 Synthetic Study  

To objectively assess the potential benefit of quantification of initial condition uncertainty in 

drought forecasting, a synthetic study is first conducted. Following Moradkhani (2008), the 

synthetic study includes the following steps: (1) a “truth” run of PRMS with the pre-calibrated 

model parameters; (2) synthetic satellite soil moisture observations, which are generated from 

the truth run by incorporating the observation errors; (3) ensemble OL run with perturbed forcing 

data without DA; (4) the DA integration that assimilates the synthetic satellite observations. The 

probabilistic initial conditions from OL and DA are then used in the copula model to generate 

drought forecasting products. Finally, the OL and DA forecasting results are compared against 

the true simulations to evaluate the impact of initial condition uncertainty through DA. The 

copula probabilistic drought forecasting model is developed based on the truth run of root-zone 

soil moisture. It is noted that in the following discussions, the “DA” experiment indicates the 

results with the assimilation of satellite surface soil moisture, while the “OL” indicates the 

results without assimilation of satellite observations, hence the uncertainty in initial condition is 

not accounted for. Both DA and OL results are achieved through hydrologic modeling and 

copula-based statistical modeling.  

The DA was performed by assimilation of the synthetic satellite surface soil moisture for 

the period of October 1, 2014 to September 30, 2015. We focused on hindcasting the drought 

events in 2015, since the CRB received historically low snowpack in this year and drought 

emergences had been declared in Oregon (OR) and Washington (WA) states in spring 2015. 

Considering the satellite data availability, we employed the CCI soil moisture products for DA in 

2014 and AMSR2 retrievals for 2015. Contrary to the small ensemble size (12~20) used in the 

majority of previous satellite soil moisture DA studies (De Lannoy et al., 2012; Kumar et al., 
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2014b, 2009; Pan and Wood, 2010; Reichle et al., 2010), a large ensemble size of 200 was used 

in this study to fully quantify the soil moisture posteriors. For the purpose of better visualization, 

all PRMS simulation results were downscaled/upscaled into NLDAS 1/8th degree grid cells. 

Results are presented only for the U.S. portion of CRB in this study.  

In the DA implementation, the precipitation was perturbed with a lognormal distribution 

with a coefficient of variation of 0.25, and the minimum and maximum temperature were 

assumed to follow normal distributions with a coefficient of variation of 0.25. These values are 

suggested to account for errors in meteorological measurements due to spatial heterogeneity and 

sensor errors (DeChant and Moradkhani, 2015; Yan et al., 2015). The white noise (standard 

deviation) for the CCI and AMSR2 soil moisture were 0.04 and 0.08 m3/m3, respectively, 

according to Kumar et al. (2014b). Prior to DA, we scaled the CCI and AMSR2 standard 

deviations by the ratio of the soil moisture time series standard deviation of the PRMS model as 

suggested by Reichle et al. (2007) and Liu et al. (2011). After scaling, the synthetic satellite soil 

moisture observations were generated by perturbing the synthetic truths with a normal 

distribution with the scaled standard deviation.  

The effects of DA on soil moisture estimation. The improvement or degradation of DA on 

soil moisture predictions are assessed using the normalized information contribution (NIC) 

(Kumar et al., 2014b). The NIC for root-mean-square-error (RMSE) is defined as follows: 

 
𝑁𝐼𝐶 =

𝑅𝑀𝑆𝐸𝑂𝐿 − 𝑅𝑀𝑆𝐸𝐷𝐴

𝑅𝑀𝑆𝐸𝑂𝐿
 (17) 

where 𝑅𝑀𝑆𝐸𝑂𝐿 indicates the RMSE values between OL and synthetic truth, 𝑅𝑀𝑆𝐸𝐷𝐴 indicates 

the RMSE values between DA and synthetic truth. If NIC > 0, the DA improves the OL skill; if 

NIC = 0, the DA does not add any skill; if NIC < 0, the DA degrades the OL skill; and if NIC = 

1, the DA achieves the maximum skill. Figure 4 presents the NIC values in the surface and root-
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zone soil moisture and their spatial distributions across the CRB. It is noted that the NIC values 

for OL and DA are generated using the ensemble mean estimates. From Figure 4, the majority of 

the grid cells show the positive NIC values, which indicates the added-value of the DA. 

Generally, the improvements in the surface soil moisture field are consistent with the 

improvements in the root-zone soil moisture field. For surface soil moisture, the daily basin-

averaged RMSE (m3/m3) for the OL was 0.0213, and it decreased to 0.0114 with DA. Similarly, 

the daily basin-averaged root-zone soil moisture RMSE value decreased from 0.0194 in the OL 

to 0.0116 in the DA. The improvements in surface field are higher than root-zone field, which is 

consistent with the previous soil moisture synthetic studies (Kumar et al., 2014a, 2012, 2009).  

 

--------------------------------------- 

Please place Figure 4 here 

--------------------------------------- 

 

The effects of DA on drought forecasting. Prior to investigating the drought forecasting 

results, it is necessary to compare the initial conditions generated by the OL and DA. This 

comparison can be seen in Figure 5. In this figure, the initial conditions for seasonal drought 

forecasting beginning on January 1 (winter forecasting), April 1 (spring forecasting), July 1 

(summer forecasting), and October 1, 2015 (fall forecasting) are presented. Each sub-plot 

contains the basin-averaged daily root-zone soil moisture for the synthetic truth, shown as a 

single value; the OL and the DA, shown as a distribution of values, which represent the 

probability distribution of initial root-zone soil moisture values. From Figure 5, it is observed 

that the OL and DA display very different behavior for each season. For all four seasons, the DA 
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root-zone soil moisture reduce the uncertainty of OL estimations and the mean root-zone soil 

moisture is closer to the synthetic truth for the DA.  

 

--------------------------------------- 

Please place Figure 5 here 

--------------------------------------- 

 

In this study, drought is characterized with the root-zone soil moisture percentile (Mao et 

al., 2015; Shukla et al., 2011; Wang et al., 2011) and drought intensity is classified based on the 

National Drought Mitigation Center (NDMC) United States Drought Monitoring (USDM) 

(Svoboda et al., 2002). Five categories are defined: D0 (abnormally dry, percentile ≤ 30%), D1 

(moderate drought, percentile ≤ 20%), D2 (severe drought, percentile ≤ 10%), D3 (extreme 

drought, percentile ≤ 5%), and D4 (exceptional drought, percentile ≤ 2%).  Leaving out the first 

five years as model spin-up period, the copula drought forecasting model was developed based 

on the true simulations from January 1, 1984 to December 31, 2014. The probabilistic forecast of 

drought status in the following season given the drought condition in the current season was 

examined using root-zone soil moisture for each gird cell. The dependencies between aggregated 

root-zone soil moisture were modeled by a Gaussian copula while their marginal distributions 

are modeled with lognormal distributions as suggested by Madadgar and Moradkhani (2014). 

The copula forecasted drought conditions using the OL and DA initial conditions were compared 

against the corresponding synthetic truth. It is noted that the OL and DA initial conditions were 

sampled as the posterior mean values.  
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Figure 6 presents the spatial distributions of seasonal drought forecasting probabilities of 

OL and DA for winter/spring/summer/fall 2015. The probabilistic drought conditions in each 

season were forecasted using the root-zone soil moisture in the previous season. The absolute 

drought extent bias (%) between the synthetic truth and MLE forecasted droughts are shown in 

the top panel of Figure 7. Generally, compared with the synthetic truth, both OL and DA 

seasonal forecasting products showed high probabilities (>30%) for the major drought locations 

in the following seasons. These results indicate the efficiency of the copula model in seasonal 

drought forecasting. Based on the drought extent bias, the DA estimates showed systematic 

improvements over the OL estimates in the four seasons. For instance, the drought extent bias 

between the MLE-OL and synthetic truth was 29.87% for winter 2015 forecasting, and it 

decreased to 20.71% with MLE-DA. Similarly, drought extent bias decreased from 4.73% with 

MLE-OL to 0.95% with MLE-DA for 2015 summer. 

 

--------------------------------------- 

Please place Figures 6-7 here 

--------------------------------------- 

 

Figure 8 shows the spatial distributions of three seasonal drought outlook and inter-annual 

drought forecasting probabilities of OL and DA for summer 2015 and April-September (spring 

and summer) 2015, respectively. The absolute drought extent bias (%) between the synthetic 

truth and MLE forecasted droughts are shown in the bottom panel of Figure 7. For seasonal 

outlook, the drought extent bias decrease when more information becomes available. For OL, the 

drought extent bias for the 1st outlook was 33.13% for summer 2015, and it decreased to 29.67% 
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and 24.39% for the 2nd and 3rd outlook, respectively. For DA, the drought extent bias for the 1st, 

2nd, and 3rd outlooks were 28.89%, 23.63%, and 17.13%, respectively. For summer 2015, the 

drought extent bias for seasonal drought foresting is the lowest, which is due to the persistence of 

soil moisture memory. The seasonal drought forecasting provides better results than the seasonal 

drought outlook. The inter-annual drought forecasting for April-September 2015 shows the 

highest drought extent bias. This result indicates the large uncertainty associated with the long-

term drought forecasting.  

 

--------------------------------------- 

Please place Figure 8 here 

--------------------------------------- 

 

3.5 Real Case Study 

When assimilating the real satellite soil moisture data, the systematic biases between the 

satellite-based and model-based soil moisture cannot be avoided (Reichle and Koster, 2004; Su 

et al., 2014; Yan et al., 2015; Yilmaz and Crow, 2013). Proper treatment of these systematic 

biases is important, as the DA algorithm is designed to work with errors that are strictly random 

(Dee and Da Silva, 1998; Doucet and Johansen, 2011; Evensen, 1994). The most common 

approach, the cumulative distribution function (CDF)-matching (Reichle and Koster, 2004), was 

implemented here to rescale the satellite observations to the model’s climatology. The CDF-

matching approach can correct all the moments of the distribution regardless of its shape. 

Leaving out the first five years as model spin-up period, the CCI soil moisture products were 

rescaled from 1984-2014. The AMSR2 soil moisture products were rescaled from 2012-2015. 
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For real data study, the perturbation errors were the same as the synthetic study except for the 

model error. The model error is normally distributed with a coefficient of variation of 0.15 (Yan 

et al., 2015). Since the satellite soil moisture data quality control plays an important role in the 

final DA performance (Champagne et al., 2011; Yin et al., 2014), before the rescaling procedure, 

both the CCI and AMSR2 soil moisture dataset are screened by the data provider for larger water 

bodies (percent of land in pixel<95%), frozen soils (surface temperature<273 K), and dense 

vegetation (vegetation optical depth>0.8). 

Since no “true” drought data exist for real case study, the state drought declarations are 

used as the references to assess the drought forecasting skill (Shukla et al., 2011). Two case 

studies are presented here to indicate the added-value of DA for improving drought forecasting 

skill. (1) In spring 2013, drought declarations were issued for nine counties in the southern Idaho 

(ID). Three months later, a total of 19 counties in ID issued drought emergence. (2) In winter 

2015, the PNW received historically low snowpack conditions. In June 2015, WA Governor 

declared the statewide drought and OR Governor declared drought emergencies for 19 out of 36 

Oregon counties (about 80% of the state’s landmass). As a result, the DA was performed by 

assimilation of the real satellite surface soil moisture for six-month period until the forecast 

initialization date.  

The drought conditions of the PNW in summer 2013 and spring 2015 can be predicted 

based on the drought conditions in spring 2013 and winter 2015, with the copula-based seasonal 

drought forecasting system. The DA can further improve the drought forecasting skill as 

demonstrated in the synthetic study. Similar to the synthetic study, prior to investigating the 

seasonal drought forecasting results, it is necessary to compare the initial conditions of OL and 

DA. In Figure 9, the initial conditions for seasonal drought forecasting beginning on July 1, 2013 
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(summer forecasting) and April 1, 2015 (spring forecasting) are presented. Each sub-plot 

contains the basin-averaged daily root-zone soil moisture for the OL, shown as a single value; 

and the DA, shown as a distribution of values, which represent the probability distribution of 

initial root-zone soil moisture values. For both seasons, the DA root-zone soil moisture show 

lower values, which is more consistent with the real drought situations.  

 

--------------------------------------- 

Please place Figure 9 here 

--------------------------------------- 

 

Figure 10 presents the spatial distributions of seasonal drought forecasting probabilities and 

MLE forecasted droughts for summer 2013 and spring 2015, respectively. The MLE forecasted 

drought extent (%) over the U.S. portion of the CRB between the OL and DA is shown in Figure 

11. Given the initial conditions in spring 2013, the basin-averaged forecasted drought 

probabilities for summer 2013 were 51.80% and 54.64% for OL and DA, respectively. The 

forecasting drought probabilities for spring 2015 were 32.86% and 49.58% for OL and DA, 

respectively. For both cases, the DA suggests a higher probability of drought in summer 2013 

and spring 2015, which is more consistent with the state declaration. The MLE forecasted 

drought extents increased from 64.67% and 25.85% in the OL to 70.57% and 52.83% in the DA 

for summer 2013 and spring 2015, respectively. Especially for the spring 2015, the OL forecasts 

underestimated the severe drought conditions for WA and OR. In terms of both forecasted 

probabilities and MLE forecasted drought extents, the DA is much more consistent with the state 

declaration. In summary, compared with the OL, the DA improves the drought forecasting skill 
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for both summer 2013 and spring 2015. These results demonstrate the added-value of DA to 

facilitate the state drought preparation and declaration, at least three months before the official 

state drought declaration.  

 

--------------------------------------- 

Please place Figures 10-11 here 

--------------------------------------- 

 

It is also noted that with increasing ensemble size, the computational cost will increase. 

Therefore, the DA in this study is performed on a high-performance computing infrastructure. 

All the DA simulations are performed on the Linux Hydra Cluster located at Portland State 

University (PSU) with 24 nodes, 384 processors. The ensemble size of 200 was selected based 

on the DA performance accuracy and computational demand. Since we use the PMCMC 

approach in this study, it requires larger ensemble size than the EnKF. However, similar to the 

approach developed for the EnKF (Yin et al., 2015), the optimal ensemble size in the PMCMC 

can be estimated. 

 

 

4 Conclusions  

In this study, we proposed a probabilistic drought forecasting system, with a combination of 

dynamical and statistical components. The dynamical hydrologic modeling is coupled with the 

copula-based statistical forecasting. Moreover, the ensemble data assimilation technique is used 

to improve state initialization in the copula-based probabilistic forecasting framework by 
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allowing for uncertainty in the initial condition. This probabilistic drought forecasting system 

was implemented in the Columbia River Basin, Pacific Northwest. We examine the impacts of 

assimilating remotely sensed surface soil moisture for quantifying the initial condition 

uncertainty and their subsequent contributions toward an improved forecasting of agricultural 

droughts. Results from both synthetic and real case studies suggest that the proposed drought 

forecasting system significantly improves the seasonal agricultural drought forecasting skills and 

can facilitate the state drought preparation and declaration. Similar to what has been explained 

here, other satellite or in-situ data, e.g. precipitation and total water storage, can also be 

assimilated in the same way to improve the forecasting of meteorological and hydrological 

droughts. 
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Figure 1. The framework of the proposed dynamical-statistical probabilistic drought forecasting 

system. For each forecasting initialization date, the data assimilation (DA) technique is used to 

account for the initial condition uncertainty, in terms of a probability density function (PDF). An 

updated initial condition is then sampled from the PDF and input into the multivariate copula 

drought forecasting model to generate the probabilistic drought forecasts. 
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Figure 2. The seasonal and inter-annual drought forecasting framework. 

 

 

 

 

 

 

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun 1-Jan

1-Feb

Prediction for this 
season based on 

last season. 
Performed on 1-
Jan, 1-Apr, 1-Jul, 

and 1-Oct

Prediction for next 
half a year based 

on last half a year. 
Performed on 1-
Jan, 1-Apr, 1-Jul, 

and 1-Oct

Prediction for 
next season 

given last season. 
Performed on 1-
Jan, 1-Apr, 1-Jul, 

and 1-Oct

Prediction for 
next season 

given last 
season + last 
two months. 

Performed on 
1-Mar, 1-Jun, 
1-Sep, 1-Dec

Prediction for 
next season 

given last season 
+ last month. 

Performed on 1-
Feb, 1-May, 1-

Aug, 1-Nov

1-Mar

1-Arp

SEASONAL 
FORECASTING

INTER-ANNUAL
FORECASTING

1st SEASONAL
OUTLOOK

2nd SEASONAL
OUTLOOK

3rd SEASONAL
OUTLOOK



36 

 

 

Figure 3. The location of the Columbia River Basin and the Kling-Gupta efficiency (KGE) 

values for the 146 No Regulation No Irrigation (NRNI) streamflow gauges. 
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Figure 4. The normalized information contribution (NIC) value. The positive value indicates that 

the DA improves soil moisture prediction against OL; negative value indicates the degradation 

over the OL. 
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Figure 5. Comparison of the basin-averaged daily root-zone soil moisture (m3/m3) by the open-

loop (OL) and data assimilation (DA) for fall 2014 and winter/spring/summer 2015 across the 

CRB. The error bars show the 95% prediction intervals. 

 

 

 

 

 

 

 

 

 



39 

 

 

Figure 6. Seasonal probabilistic drought forecasting for both OL and DA for different seasons in 

2015 given the drought status in each of the previous seasons. 
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Figure 7. The absolute drought extent bias between the OL/DA and synthetic truth for the 

seasonal forecasting for winter/spring/summer/fall 2015 (top-panel), seasonal outlook for 

summer 2015 and inter-annual forecasting for April-September 2015 (bottom-panel). 
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Figure 8. The 1st, 2nd, and 3rd probabilistic seasonal outlook results between OL and DA for 

summer 2015 (according to the framework shown in Figure 2). The inter-annual forecasting for 

spring and summer 2015 given the drought status in fall 2014 and winter 2015. 
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Figure 9. Comparison of the basin-averaged daily root-zone soil moisture (m3/m3) by the open-

loop (OL) and data assimilation (DA) for spring 2013 and winter 2015 across the CRB. The error 

bars show the 95% prediction intervals. 
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Figure 10. The seasonal probabilistic drought forecasts for summer 2013 and spring 2015 given 

the drought status in spring 2013 and winter 2015, respectively. The top-panel shows the 

forecasted drought areas based on MLE and the bottom-panel indicates the forecasted drought 

probabilities. 
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Figure 11. The forecasted drought extent between the OL and DA based on MLE across the 

CRB. 

 

 


